3x2mm Dual Die MLP

MPPS[™] Miniature Package Power Solutions DUAL 20V N-CHANNEL ENHANCEMENT MODE MOSFET

SUMMARY

 $V_{(BR)DSS} = 20V; R_{DS(ON)} = 0.12\Omega; I_{D} = 3A$

DESCRIPTION

Packaged in the new innovative 3mm x 2mm MLP(Micro Leaded Package) outline this dual 20V N channel Trench MOSFET utilizes a unique structure combining the benefits of Low on-resistance with fast switching speed. This makes them ideal for high efficiency, low voltage power management applications. Users will also gain several other **key benefits**:

Performance capability equivalent to much larger packages

Improved circuit efficiency & power levels

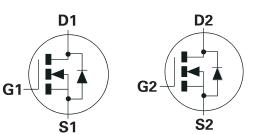
PCB area and device placement savings

Reduced component count

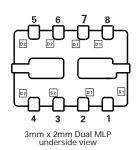
FEATURES

- Low On Resistance
- Fast switching speed
- Low threshold
- · Low gate drive
- 3mm x 2mm MLP

APPLICATIONS


- DC-DC Converters
- Power Management Functions
- Disconnection switches
- Motor Control

ORDERING INFORMATION


DEVICE	REEL	TAPE WIDTH	QUANTITY PER REEL
ZXMN2AM832TA	7''	8mm	3000 units
ZXMN2AM832TC	13′'	8mm	10000 units

DEVICE MARKING

ISSUE 3 - JANUARY 2005

PINOUT

ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	N-Channel	UNIT
Drain-Source Voltage	V _{DSS}	20	V
Gate-Source Voltage	V _{GS}	±12	V
Continuous Drain Current @ V_{GS} =10V; T _A =25°C ^{(b) (f)}	ID	3.7	A
@ V_{GS} =10V; T_{A} =70°C ^{(b) (f)}		3.0	A
$@V_{GS}=10V; T_{A}=25^{\circ}C^{(a)}(f)$		2.9	A
Pulsed Drain Current	I _{DM}	13	A
Continuous Source Current (Body Diode) ^{(b) (f)}	۱ _S	3.0	A
Pulsed Source Current (Body Diode)	I _{SM}	13	A
Power Dissipation at TA=25°C ^{(a) (f)}	PD	1.5	W
Linear Derating Factor		12	mW/°C
Power Dissipation at TA=25°C ^{(b) (f)}	PD	2.45	W
Linear Derating Factor		19.6	mW/°C
Power Dissipation at TA=25°C ^{(c) (f)}	PD	1	W
Linear Derating Factor		8	mW/°C
Power Dissipation at TA=25°C (^{d) (f)}	PD	1.13	W
Linear Derating Factor		9	mW/°C
Power Dissipation at TA=25°C ^{(d) (g)}	PD	1.7	W
Linear Derating Factor		13.6	mW/°C
Power Dissipation at TA=25°C ^{(e) (g)}	PD	3	W
Linear Derating Factor		24	mW/°C
Operating and Storage Temperature Range	Tj:Tstg	-55 to +150	°C

THERMAL RESISTANCE

PARAMETER	SYMBOL	VALUE	UNIT
Junction to Ambient (a)(f)	R _{0JA}	83.3	°C/W
Junction to Ambient (b)(f)	R _{0JA}	51	°C/W
Junction to Ambient (c)(f)	R _{0JA}	125	°C/W
Junction to Ambient (d)(f)	R _{OJA}	111	°C/W
Junction to Ambient (d)(g)	R _{⊕JA}	73.5	°C/W
Junction to Ambient (e)(g)	R _{⊕JA}	41.7	°C/W

Notes

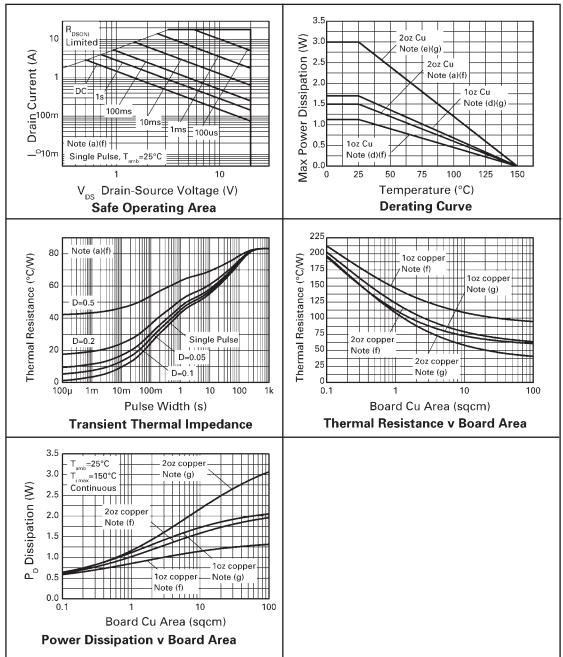
(a) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

(b) Measured at t<5 secs for a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

(c) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with minimal lead connections only.

(d) For a dual device surface mounted on 10 sq cm single sided 1oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

(e) For a dual device surface mounted on 85 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.


(f) For a dual device with one active die.

(g) For dual device with 2 active die running at equal power.

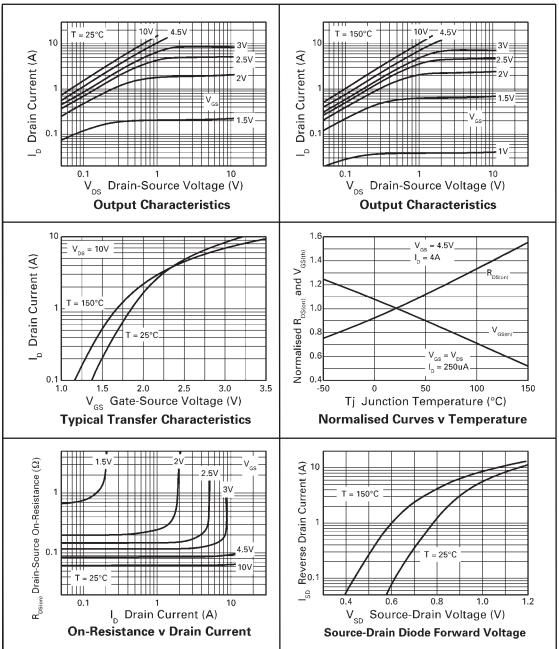
(h) Repetitive rating - pulse width limited by max junction temperature. Refer to Transient Thermal Impedance graph.

(i) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base of the device as shown in the package dimensions data. The thermal resistance for a dual device mounted on 1.5mm thick FR4 board using minimum copper 1 oz weight, 1mm wide tracks and one half of the device active is Rth = 250°C/W giving a power rating of Ptot = 500mW.

TYPICAL CHARACTERISTICS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS.		
STATIC				•				
Drain-Source Breakdown Voltage	V _{(BR)DSS}	20			V	I _D =250μA, V _{GS} =0V		
Zero Gate Voltage Drain Current	I _{DSS}			1	μΑ	V _{DS} =20V, V _{GS} =0V		
Gate-Body Leakage	I _{GSS}			100	nA	V _{GS} =±12V, V _{DS} =0V		
Gate-Source Threshold Voltage	V _{GS(th)}	0.7			V	I _D =250μA, V _{DS} =V _{GS}		
Static Drain-Source On-State Resistance ⁽¹⁾	R _{DS(on)}		0.09	0.12 0.30	Ω Ω	V _{GS} =4.5V, I _D =4A V _{GS} =2.5V, I _D =1.5A		
Forward Transconductance ⁽³⁾	9 _{fs}		6.2		S	V _{DS} =10V,I _D =4A		
DYNAMIC ⁽³⁾	I				1	1		
Input Capacitance	Ciss		299		pF			
Output Capacitance	C _{oss}		60		pF	V _{DS} =15 V, V _{GS} =0V, f=1MHz		
Reverse Transfer Capacitance	C _{rss}		33		pF			
SWITCHING ^{(2) (3)}								
Turn-On Delay Time	t _{d(on)}		2.31		ns			
Rise Time	t _r		2.60		ns	V _{DD} =10V, I _D =4A		
Turn-Off Delay Time	t _{d(off)}		1.55		ns	$R_{G} \approx 6.0\Omega, V_{GS} = 5V$		
Fall Time	t _f		1.31		ns			
Total Gate Charge	Qg		3.1		nC			
Gate-Source Charge	Q _{gs}		0.7		nC	V _{DS} =10V,V _{GS} =4.5V, I _D =4A		
Gate-Drain Charge	Q _{gd}		1.0		nC			
SOURCE-DRAIN DIODE								
Diode Forward Voltage ⁽¹⁾	V _{SD}		0.9	0.95	V	T _J =25°C, I _S =3.2A, V _{GS} =0V		
Reverse Recovery Time ⁽³⁾	t _{rr}		23		ns	Т _Ј =25°С, I _F =4А,		
Reverse Recovery Charge ⁽³⁾	Q _{rr}		5.65		nC	di/dt= 100A/µs		

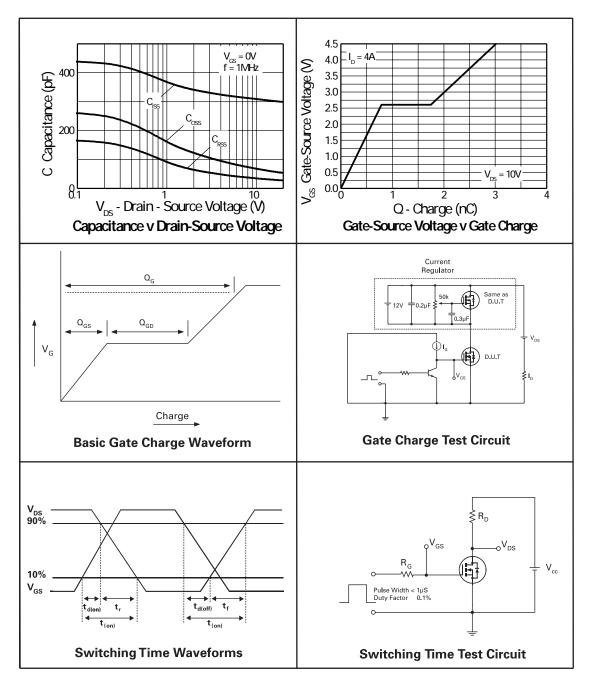
ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated).


NOTES

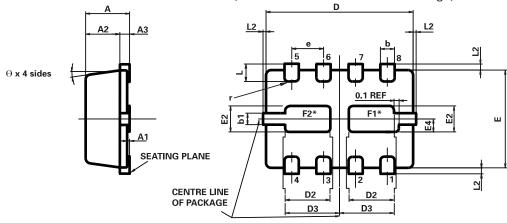
(1) Measured under pulsed conditions. Width ${\leq}300\mu s.$ Duty cycle ${\leq}$ 2%.

(2) Switching characteristics are independent of operating junction temperature.

(3) For design aid only, not subject to production testing.



TYPICAL CHARACTERISTICS


ISSUE 3 - JANUARY 2005

TYPICAL CHARACTERISTICS

MLP832 PACKAGE OUTLINE (3mm x 2mm Micro Leaded Package)

*Exposed Flags. Solder connection to improve thermal dissipation is optional. F1 at collector 1 potential

F2 at collector 2 potential

CONTROLLING DIMENSIONS IN MILLIMETRES APPROX. CONVERTED DIMENSIONS IN INCHES

	MILLIN	IETRES	INC	HES		MILLIMETRES		INCHES	
DIM	MIN.	MAX.	MIN.	MAX.	DIM	MIN.	MAX.	MIN.	MAX.
А	0.80	1.00	0.031	0.039	е	0.65 REF		0.0256 BSC	
A1	0.00	0.05	0.00	0.002	Е	2.00 BSC		0.0787 BSC	
A2	0.65	0.75	0.0255	0.0295	E2	0.43	0.63	0.017	0.0249
A3	0.15	0.25	0.006	0.0098	E4	0.16	0.36	0.006	0.014
b	0.24	0.34	0.009	0.013	L	0.20	0.45	0.0078	0.0157
b1	0.17	0.30	0.0066	0.0118	L2		0.125	0.00	0.005
D	3.00	BSC	0.118	BSC	r	0.075 BSC		0.002	9 BSC
D2	0.82	1.02	0.032	0.040	θ	0°	12°	0°	12°

MLP832 PACKAGE DIMENSIONS

© Zetex Semiconductors plc 2005

Europe	Americas	Asia Pacific	Corporate Headquarters
Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd	Zetex Semiconductors plc
Streitfeldstraße 19	700 Veterans Memorial Hwy	3701-04 Metroplaza Tower 1	Zetex Technology Park
D-81673 München	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	Chadderton, Oldham, OL9 9LL
Germany	USA	Hong Kong	United Kingdom
Telefon: (49) 89 45 49 49 0	Telephone: (1) 631 360 2222	Telephone: (852) 26100 611	Telephone (44) 161 622 4444
Fax: (49) 89 45 49 49 49	Fax: (1) 631 360 8222	Fax: (852) 24250 494	Fax: (44) 161 622 4446
<u>europe.sales@zetex.com</u>	<u>usa.sales@zetex.com</u>	<u>asia.sales@zetex.com</u>	<u>hq@zetex.com</u>

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to www.zetex.com

